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The off-diagonal ordering of one- and two-dimensional Bose particle systems of finite thick-
ness and cross-section is considered in the presence and absence of a symmetry-breaking
field. It is shown rigorously, by applying Bogoliubov’s inequality to a subdomain of the sys-
tem, that no spontaneous ordering can occur; several definitions of long-range order are dis-
cussed. Explicit bounds on the order-order correlation function, integrated over a subdomain,

are obtained which indicate how the short-range order decays with distance.

Conditions under

which information on the pointwise behavior of the correlation function can be inferred are
also discussed. The inequalities are assessed numerically for real situations.

1. INTRODUCTION

Ordering or spontaneous symmetry breaking in
systems admitting a continuous global symmetry
operation (such as total spin rotation in an isotropic
ferromagnet or gauge transformation in a Bose
fluid) is of fundamental theoretical and experimen-
tal interest. Heuristic arguments, frequently based
on thermodynamic considerations or simple con-
cepts of elémentary excitations, have long ago sug-
gested that one- or two-dimensional systems cannot
support long-range ordering or sustain a broken
symmetry. Qualitatively it appears that the fluc-
tuations in magnitude and “direction” of the local
order parameter are so large in one or two dimen-
sions as to break up any initially ordered state.
(Conversely in a fully three-dimensional system a
state of broken symmetry may be stable at low
enough temperatures.) Recently Hohenberg! has
demonstrated that an operator inequality, due
originally to Bogoliubov,? can be used to substantiate
these conclusions in superfluid and superconducting
systems. Mermin and Wagner® considered isotropic
Heisenberg ferromagnets and antfferromagnets and
proved rigorously that spontaneous magnetization
(or sublattice ordering) cannot occur at any nonzero

temperature if the system is one or two dimensional.

Similar rigorous arguments have been developed
for other systems.* Chester, Fisher, and Mermin®
have shown explicitly that these results remain
valid even for a system extended in three dimen-
sions provided the over-all cross section (d=1)
or the over-all thickness (d=2) is finite.

The existing proofs™® first introduce a symmetry-
breaking field n (a magnetic field H inthe case of
a ferromagnet) into the Hamiltonian, then proceed
to the thermodynamic limit (volume V—-), and
finally demonstrate that the induced order param-
eter ¥(n) [the magnetization M(H), in a ferromagnet]
vanishes as the 7 field is reduced to zero, [n]-0
(H-0). While the result ¥, (or M,) =0, obtained
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in this way is valuable, the arguments leave open
certain basic questions:

(a) How does the static order-order correlation
function o(¥, ') behave for large spatial separations
of the arguments? In particular, one would like to
show that 0~ 0 as |F -¥'| ~» to demonstrate the
absence of any long-range order.

(b) Can the initial introduction of the symmetry-
breaking field be avoided in proving the absence of
spontaneous order ? This question seems especial-
ly pertinent in the case of a Bose fluid,® where the
appropriate “off-diagonal” or “anomalous” field
7 cannot be realized physically, and the relevance
of the corresponding definition of ¥, might be ques-
tioned.

We have found that if attention is concentrated
on the correlation functions (with or without a
symmetry-breaking field), Bogoliubov’s inequality
can again be manipulated to give rigorous answers
to these questions.” We treat the case of a Bose
system and a Heisenberg/Ising magnet in these arti-
cles. Section II introduces the notation and sum-
marizes our specific results. Several types of long-
range order are considered and discussed in detail
in the later sections. A brief outline of the argu-
ments is presented at the end of Sec. II. The re-
mainder of this paper is devoted exclusively to the
detailed proofs concerning anomalous or off-diago-
nal order in Bose particle systems.” The corre-
sponding detailed arguments for spin systems are
taken up in the following paper.

II. NOTATION AND SUMMARY OF RESULTS

To introduce the notation consider first an aniso-
tropic Heisenberg ferromagnet of 9U(R) localized
spins S(¥) occupying the sites ¥ of a regular lattice
contained in a domain . We take the Hamiltonian
to be

5o = -5 Lg Dy [4,F, F) S*F) S*(F)
+J,(F, F) S (F) S @) + I, (F, F) $*(F) $*(")]
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-2:h@) . 8@, (2.1)
where h(r) is the external field in energy units
(h=%gugH), while J, (¥, #) is the exchange coupling.
Note that the terms with ¥ =T’ represent single-
spin anisotropy terms of magnitude 3J, (%, ¥) (5%)
(a=x,9,2). Wewill allow J,(¥, ¥') to vary randomly
(or regularly). The a component of the spontaneous
magnetization per spin at temperature T is defined
by the expression

MX(T)= lim M*(h, T)

hg = O+
= lim lim Q) 20(S*F)),, (2.2)
hg »0+ Q) - = b

where the thermal average ( S*(F))q is calculated in
the presence of fixed (uniform) field h with hy #0.
This magnetic field is needed to break the under-
lying symmetry, which is (a) spherical if J,=J,=J,
(b) axial or cylindrical (about the z axis) if J,=J,
#J,, or (c) merely reflexive if J,#J, #J,. [Note

in considering, say, the spontaneous magnetization
in the x direction, M§(T), it is not essential that

kg or h, vanish. ]

The thermodynamic limit 91 () - is, of course,
essential since the magnetization MJ in a finite
system vanishes identically by symmetry if 2, =0.
The system may be three dimensional in the sense
that @ contains many lattice layers, but if, in the
thermodynamic limit, £ may be contained between
two parallel planes of a fixed, finite separation D,,
we say the dimensionality is vestricted to d =2.°
Similarly, if @ can be contained within a cylinder
of fixed, finite rectangular cross section D,D,,
the dimensionality is said to be restricted to d=1.°
We will refer to the infinite domain enclosing € as
the “box” A.

In the case of a Bose system we take the Hamil-
tonian for a system of N particles in a bounded
domain § to be

Ky, a=Ty+Uy+Wy, (2.3)
where the kinetic-energy operator is
;Z N
Ty==5—2 7 (2.4)
i=1

while Uy = Uy(¥, T5,...,Ty) is the total interaction
potential, which consists of the usual sum of two-
body interaction terms, plus appropriate higher-
order three-body, four-body, ..., terms.®'°
Finally, Wy(¥,...,¥,) is a sum of N single-body
terms W,(¥;), representing the wall potentials,
which ensure that the many-body position wave func-
tions &y(f,, ..., Ty) vanish continuously as any ¥,
approaches the boundary of the domain £. (The do-
main is assumed to be of sufficiently regular
shape.*10)
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For a Bose system the many-body wave functions
must satisfy the condition of total symmetry:

UUE U S AU SUNUE SO

(all i, 7).

a0 ..

As is well known, the combinatorial difficulties
associated with this restriction may be conveniently
handled by the formalism of second quantization;
we sketch this briefly here to bring out a few points
relevant to our subsequent arguments. One starts
with a set <p,,(1") of continuous, differentiable single-
particle wave functions which are complete in £,
and vanishing on the boundary. (These might, but
need not, be eigenfunctions of the Laplacian, i.e.,
of the kinetic energy.) If a, and a.,',' are the corre-
sponding annihilation and creation operators ap-
propriate to Bose statistics,“ we may construct

the field operators

PF) =23,0,F)a,, V'E=2,0rFa]

If, by convention, we suppose that each <p,,(f) van-
ishes identically for ¥ outside 2, then the field
operators are defined for all ¥ and satisfy the for-
mal commutation relations

[p@), pE)]=[¥'@), $'(E)]=
[p@), »'E")]=6(F -F') for ¥ and ¥’

=0 otherwise.

(2.5)

both in ©
(2.6)

It is worth stressing, to avoid possible misunder-
standing, that d)(r P'(r Y& ), and any of their linear

or nonlinear combinations or derivatives, integrals,
etc., are acceptable operatfors which do not have

to satisfy any “boundary conditions.” As usual the
density operator is

p(@) =9"@ p(F),

while the number operator for the domain § is

(2.7)

Ro= fp()dF (2.8)
The second-quantized Hamiltonian is then
Ro=To+Ug+ Wy, (2.9)
with
- (/2m) [, 9" (F) V*y(F) dF
= (7/2m) [, V') V@) dF, (2.10)
(2.11)

Wa= [, W@ o) dF,

while f]n is similarly a quadratic or higher-order
functional of the density operator p(¥) alone.

For a particle system it is natural to use a canon-
ical (i.e., particle-conserving) ensemble for the
statistical mechanics. This means that in the cal-
culation of the partition function Zy, o, and thermal
averages - Yn, @ all traces are restricted to the
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subspace for which ng is just N times the identity
operator. In taking the thermodynamic limit the
number of particles N and the volume V() of the
domain Q are related as usual®!® by

N/V(Q)=pg=~p as V(Q)= . (2.12)

We will make use of this canonical formulation
below, but since it does not allow the analog of the
magnetic symmetry-breaking terms, we will also
consider the gvand-canonical ensemble in which
the traces are unrestricted and in which the Hamil-
tonian is taken in the form

Géu'ﬂ=360—uﬁﬂ—iln . (2. 13)

Here p is the chemical potential (which is the ana-
log of the longitudinal field 7, in the magnetic
case'?), while the symmetry-breaking part of the
Hamiltonian is

fra= [, (n@ 9@ +7* @) dr (2.14)

where the “off-diagonal” or “anomalous” fields
n(@)=1"(F) +in’’ (¥) are the analogs of the transverse
magnetic fields k*(F) = 1, (¥) +ik,(F). Then the analog
of expression (2. 2) for the spontaneous magnetiza-
tion is

¥(T) =lim ¥(T,n)

n -0+

=lim Lm V(@) [dF($F))g, (2.15)
N+ 0+ V(Q) »

where ( + )4 denotes the grand-canonical thermal
average in the presence of a fixed (uniform) anoma-
lous field 7.

Previous work®~ has shown that for a system of
restricted dimensionality, the anomalous average
¥, vanishes identically while the spontaneous mag-
netization Mg vanishes for all « in isotropic,
spherically symmetric systems, and Mg and M}
vanish in axially symmetric systems. Answers to
the further questions (a) and (b) posed in the Intro-
duction may be provided by considering (with
Nhe= 0) the root-mean-square order parameter'®
¥,(T) defined by

(9= lim V(R)? [ dF [dF 0off, ) . (2.16)
V(Q) »

The order-order correlation function for a Bose
system in a domain  is taken as the one-body
density matrix!*!®

oo F)=(P' TN ¥(@))q - (2.17)

In the magnetic version of (2.16), sums over the
lattice sites of © replace the integrals, 9(R) re-
places V(R), and one may take

o3, ) =(S*(F) S*F))q , (2.18)

or, in closer analogy to (2.17),

0o, F')=(S*F")S"(¥))q, (S*=S"+iS*).  (2.19)

In a fully three-dimensional system one normally
expects that ¥ (T) is proportional to ¥,(7), both being
of order unity below a nonzero transition tempera-
ture; but general proof of this has never been given.
However, for a magnetic system in which the mag-
netization is a constant of the motion, Griffiths'®
has shown that ¥ < ¥,.

Of independent interest are the shovt long-range
order ¥ (T) and the long long-vange ovder ¥,(T)
defined,!® respectively, by

(¥,)%= lim 0., )
13-#1+ o
= lim lim og(F, ¥), (2.20)

13-#] - 0 V(Q) »

where in the thermodynamic limit ¥ and ¥’ become
infinitely distant from the boundary of £, and

)%= lim oo )|izerterm (2.21)
V(Q) » =
where we may suppose that the thermodynamic limit
is taken through a sequence of domains self-similar
in d dimensions, e.g., cubes (d=3), or cylinders
of constant height (d=2), or of constant cross sec-
tion (d=1), and that R(Q)<[V(R)]'/? is a character-
istic dimension. (As a matter of fact, ¥,, even if
the limit exists, may well depend on further de-
tails of the placement of ¥ and ¥’ in Q.)

For the simple nearest-neighbor ferromagnetic
square Ising lattice it has been proven'® that ¥, =¥,;
in addition, one knows!® that oq(¥, ¥’) is monotonic
increasing in () [provided £ &’ whenever ()
>9Q’)]. Suzuki has recently argued!” that if these
conditions hold more generally for a magnetic sys-
tem in which the magnetization is a constant of the
motion, then one also has ¥ <¥,.

With these definitions, we will answer question
(b) explicitly by proving that ¥,(7) vanishes for all
T >0 for systems of restricted dimensionality
(d=2or 1). [In magnetic systems we require that
J,(¥) does not decay to zero too slowly.] To pro-
vide an answer to question (a) we average the cor-
relation function og(¥, ¥') over any (reasonably
shaped) subdomain I'C © which constitutes a “slice”
of Q as indicated in Fig. 1 (see also Sec. III), with
a weighting function f(¥), arbitrary except for the
condition

FE1=1.

This yields a definition of the corresponding short-
range order parameter ¥{f|T'} and single-particle
occupation number ng{f 1T}, namely,

[V e, {FIT} 2= V(Dng{riT}
= [LdF [ a¥ fXE)FE) oqlF, T,
(2. 23)

(2.22)
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which expression in a Bose system is equal to

1 dE AP,

while in a magnetic system it similarly represents
the mean-square weighted magnetization of the
subdomain. As at least a partial answer to (a) for
a Bose system (with 7=0) we will establish the
bounds” [see (4.26) and (4. 38)]

U {F1T}< &, In[V(T)/v,] F12= &4 {T In[V(T)/v,] }1/2
for d=2

<&, [V(T)/og]/ 4= 8} V(D] *

ford=1 (2.24)

as V(I')-=, Explicit expressions are given for the
constants &, [(4.26) and (4. 38)], v, [(4.39)], and
vp [(4.17) and (4.18)]. The coefficients &; are then
slowly varying functions of intensive parameters,
and the main temperature dependence is exhibited
in (2.24). These bounds remain valid if the thermo-
dynamic limit V() is first taken on the left-
hand side, and also if a symmetry-breaking field
7(¥) is imposed everywhere outside the subdomain
I'. Roughly speaking, this result proves that
0.(T, ¥’') must decrease faster than 1/In|¥ - ¥'| for
d=2or |F-7"2for d=1. [More precise state-
ments concerning the decrease of 0,(f, ¥’) are
proved in Sec. V.] This is not fast enough to ensure
that aw(6, T) is integrable (over an infinite domain),
so that “weak long-range order” or an infinite
“anomalous susceptibility” are not ruled out. If,
for the case I'=Q, the domain has sufficiently
regular shape so that &= e”z° * can be regarded
as a “single-particle state” of a Bose system,
then (2. 24) asserts that there cannot be macroscopic
occupancy of the state K, i.e., ng/N-0.

For an isotropic or axially symmetric magnetic
system, (2.24) is still valid [with appropriately
modified definitions (2. 23)] provided the exchange

(a) (b)

FIG. 1. Sectioned domain £ showing a “slice” sub-
domain T and surrounding corridor A, (a) One-dimen-
sional case showing, in addition, the enclosing “box”
A, (b) Two-dimensional case; enclosing “box” A not
shown.

M. E.

FISHER

| eo

interactions decrease sufficiently rapidly with
spin separation. [In essence it is sufficient that
the J,, (¥, ') have finite second moments. ] If the
coupling decreases more slowly, (2.24) has to be
modified and, indeed, when the decay is sufficiently
slow, no asymptotically decreasing bound can be
obtained by our methods (see paper II).

The analysis is based, as in previous argu-
ments, **=* on Bogoliubov’s inequality?®

144, A 2k T ([C, AD) 12X [[C, Rq), CT),

which is valid for any Hermitian Hamiltonian and
for operators not necessarily Hermitian, but re-
stricted only to the extent that the appropriate
thermal averages and commutators must exist.

(As usual %y is Boltzmann’s constant.) The reader
is referred to the literature®* for various proofs
of Bogoliubov’s inequality.

The first step in the analysis of a Bose system
is the introduction of the subdomain I'C § and of its
“corridor” A. In Sec. III a basic inequality is
developed by applying Bogoliubov’s inequality to
T" with essentially the standard choice for the oper-
ator € in terms of an arbitrary wave number k.
However, the operator A is chosen to be bilinear®
in $'(¥) and (R) (the usual choice®=® being linear).
The inequality is then integrated and summed over
a suitable choice of values of k: The estimation
of the resulting integrals is more complex than in
the earlier arguments and, at one point, entails
the use of the compressibility-fluctuation relation
to bound density fluctuations in a subvolume. The
final result is (3.37). In Sec. IV this inequality is
analyzed in various limiting cases in which V(I")
becomes large in order to establish the results
quoted above. Some numerical examples appropri-
ate to superfluid helium illustrate the strength (or
weakness) of the basic inequality. Finally, in
Sec. V the conclusions that can be drawn about the
pointwise behavior of oq(¥, ¥’) are discussed. As
already mentioned, the analysis for spin systems

(2.25)

is reserved for Paper II.

III. BASIC INEQUALTIY FOR BOSE SYSTEMS

A central idea of our analysis is that Bogoliubov’s
inequality may be usefully applied to a subdomain
I'C Q rather than to the whole system, provided
one is able to bound any ordering effects associated
with the “surface” of I'. To discuss these surface
effects we construct a “corridor” A around I" which
consists of all those points of € — I" which lie within
a distance (1+6)b (5 >0) of the interior of I'. The
volume V(A) is a measure of the surface of I"' and
we will require that

V(a)/V(T')=0 when V(I = .,

For a system of restricted dimensionality d this
means that I' must be a “slice” domain in the sense,

(3.1
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illustrated in Fig. 1, that most of the boundary of

T is common with part of the boundary of §. Simple

examples are: (i)if, for d=1, the cylinder con-
taining € is parallel to the x axis,

={rCQ: Ixl<x};

(ii) if, for d=2, the planes containing § are per-
pendicular to the z axis,

L={FfcQ: x| <x%lyl <vo}.
To apply Bogoliubov’s inequality to a Bose sys-
tem we choose
C=[atg@p@, (3.2)
with
g =a(® e ?, (3.3)

where, as stressed previously, k may be quite
arbitrary.’ The smoothly varying real amplitude
function a(¥) is constructed to have the following
properties:

(i) a(¥)=1 for FC T,

(ii) a(f)=0 for T outside I'U A,
(iii) twice continuously differentiable,
(iv) a(¥)<1and |val <b™ for FCA .

Since the width of the corridor A exceeds b by a
finite amount, there is no difficulty in satisfying
conditions (iii) and (iv).!®
With this choice of C‘, which is the usual one ex-
cept for the factor a(¥), we obtain
([[C,%q), C1y = (#/m) [, dF1 Vg1 % p(E))

rva

+ [, 1812 @) (')

+n*(F) (9(@)) ]. (3.4)

For brevity we have dropped the subscript £ on the
expectation brackets ( - ), which will be allowed to
denote either canonical (n=0) or grand-canonical
averages. Now notice that for ¥ in T' the factor
|vg|? reduces simply to k% while in A it becomes

IVgl2=k®+ |Val®<k?+b72, (3.5)
by the assumption (iv) on a(¥). Similarly, we have
1g@)12=1 for *CT
=la()? for FC A . (3.8)
Thus, if
N(=)= [ dF(p(F)) (3.7

denotes the mean number of particles in a subdo-
main % of §, the double commutator is bounded by

(16, Rol, €M) <(#/m)N(TU A) (B2+1),  (3.8)

where

X =ybe?=vb=2+y(m/i®) H{n; o}

+(1 =) (m/n?) Hin; T}, (3.9)
in which
y=N(a)/N(TU 4), (3.10)
and
Hin; 2}=2[N()]" [ dF1a@)12 IRen@)W ENH .
(3.11)

If we choose T to be the whole domain & [so that
V(A) and N(A) vanish], only the third term in (3. 9)
remains. If, furthermore, the anomalous field
7(¥) itself is absent, we have simply

r=0 for I'=Q, n(¥)=0. (3.12)

More generally, we note that if V(I')~, we will
have vy~ 0, provided the local density { p(¥)) re-
mains bounded, which we will always assume. If
the anomalous field 7(r) remains of order unity in
A, then [noting that 1{3"(¥)) 12<( p(¥)), which fol-
lows by Schwarz’s inequality] the first two terms
making up A will vanish, at least linearly, with y.
On the other hand, the third term might remain of
order unity unless the field n(¥) in the subdomain
T becomes uniformly small. In the following we
will assume, unless especially mentioned, that the
anomalous field in T itself, if present at all, is
always reduced at a rate proportional to ¥ so that
b, remains bounded away from zero.

Next we choose®

A= [ af [ dRPE) e R PEI®),  (3.13)
where f(¥) is restricted only by
If@)1 =1 for FcT
=0 otherwise. (3.14)

The numerator in the Bogoliubov inequality is then
just

I [C, A]) 12=[V(T) ({7} - n{fe® TP,

where we have written #{f} for ng{f1T}, the latter
being defined in (2. 23).

To find the consequences of the restricted di-
mensionality of the system we suppose® Q is con-
tained in the rectangular “box” A described in
Sec. II. Recall that A defines the domain between
two infinite parallel planes of fixed finite separation
D, (d=2), or the region within an infinite cylinder
of finite rectangular cross section D,D, (d=1).
Then we may introduce a complete set of wave
vectors

k= (k,; k) = (,; 211, /D,, 211,/D,), d=1

(3.15)
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= (B, bu; 211, /D), d=2  (3.16)

with E., a continuous vector, and the integers
Ly, 1,=0,21, £2, ..., (3.17)

specifying the discrete vectors El compatible with
the box A. Defining the fixed “cross section” S,
of A to be

Sq=D,D, ford=1
=D, ford=2 (3.18)
we have
Siiem Y [ dk, e ®F ) =p(F - )
ky
forfand ¥ in A.  (3.19)

The wholf inequality (2. 25) may now be integrated
over all k, subject to

k,=0 and K_<_|lz|,|5x“. (3.20)

Notice that nonpositive terms on the right-hand side
of (2. 25) and non-negative terms on the left-hand
side can be integrated over all k.. without restrlctlon
and further summed over all the (allowed) kl, since
these operations will only further strengthen the
inequality. If we denote the right- -hand side of

(2. 25) by R(k,, k,) and indicate integration subject

to (3.20) by a subscript x, we find

R=(2n) f dﬁj RE&, 0)

R NI(’IQI:J ) [0

- 2n{f}d(k, )] ,

(3.21)

where the inequality results because the positive
term involving #%{fe' * ¥} has been discarded. The
positive function I is given by
dkll
EE+x
K

I(k, 2) = (27)

= (1/myA) [tant (kT/Yx) = tan™(k/y2) ], d=1

= (1/4m)In [ +1)/(E+2)], d=2 (3.22)
so that as A/k™~ 0 with k=0 we have

Lt/ d=1
=2. (3.23)

10, \)=~ 2 A V2[(2/7) tan”
= (1/4m) In(x™%/2),
Conversely, if A=0, we have as k/k"~0
d=1
d=2.

Ik, 0)~ (1/7) k™,
~(1/2m) In(KT/K),
The second integral J in (3.21) is defined by

(3.24)

FISHER 3

. i
J, \) = (27)¢ f nife T} (3.25)

k,2,+)\

This can be bounded by (i) using the positivity of
n{-}, (ii) extending the integral to all k, and
summing on all k,, and (iii) applying (3.19). We
thus obtain the sequence of inequalities

I, )< (k2 0) D, (2m)% [y m{fet 2}
<8, (K2 +2) T N(T)/V(T) =S,00(T) (KB +1)7,
(3.26)

where pyo(T') is the mean density in the subdomain
T'. The resulting estimate can be used to further
strengthen the inequality (3. 21).

On the left-hand side, L(k,,k,) of Bogoliubov’s
inequality, we write

({41, A}y =2(AA" ([A", 4]y,

and extend the integral (and sum) to all k on the
(positive) first term only. (This decomposition is
needed to avoid difficulties with certain singular
terms. ) On dropping a negative term involving

n{fe’k # } and using the commutation relations, the
result can be written

L= (27T)-d fkdk’nL(Eu: 0)

<S; [@{fH+p(@) V(ITE - V(D) n{f}]+: V(T u{f}F,,

(3.27)
where
. M
- (Zw)'dfdk,, e A (3. 28)
md
and where the functional @{f} is defined by
Q{f}= [ df [ R [ aR'r* R")f(R)

X (p@) IR IR)). (3.29)

When I'=, the integral over the operator p(¥) in
this expression just yields the total number operator
JVQ, which, if we employ a canonical ensemble, is,
as explained, merely proportional to the identity
operator. The expectation value in (3. 29) thus
simplifies, and we obtain the result

Q{rt=NE@) V(@) n{r}
=V(QPpa@)n{f}, T'=0.

However, when I is properly contained in 2, the
functional @ cannot be treated so simply since the
number of particles in T is not conserved. The
point at issue is essentially the size of the natural
fluctuations of the number of particles in I'. This
may be estimated via the well~-known compressibil-
ity sum rule, which, for a finite subdomain, may

(3. 30)
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be written

Jodf [La [(p@)p(F)) = p@))p(F) ]

=k T pa(T V(T) K[1 +€()], (3.31)

where we assume that K,, the isothermal bulk com-
pressibility of the system, is bounded.!® The term
€(T") normally represents a surface-to-volume cor-
rection and will vanish as V(I') -~ in the thermody-
namic limit. Now the thermal averages admit a
Schwarz inequality, which, if

Ly =(XP) (XN DY =( R (X)) T T))),
(3.32)
]

Q{F < V(M2 po(M) n{f} + V(T)®*/2 po(T)? {kx TK ;1 +€(T)] }/2 {1 + O[V(T)/?] }.

Evidently the first term represents the analog of
(3. 30) above, while the second and dominant term
is the correction due to the finite volume fluctua-
tions.

Finally, on collecting terms and using the defini-
tion (2. 23), our basic inequality may be written

q. q q4
gol i, 1) ¥* <92 ["‘ Y [ ] NI RSTIE
(3.37)

where ¥ = ¥{f] T'} and qo to g4 are intensive param-
eters depending on temperature and density. Ex-
plicitly, we have

qo=(1 =) [mhpT/Mpqo(T)S,] , (3.38)
g1=pa(T) + (k™ - k%)/2nd?S, - 1/V(T) , (3.39)
42 =2(1 = )? (mky T/HP), (3.40)
q3=[pa(@)*{ks TK,[1 + ()] }/?, (3.41)
a4=pa(T), (3.42)

and, to recapitulate, I(x, ) is defined by (3. 22)-
(3.24), X and y by (3.9)-(3.12), and S, by (3.18).

In the special case I'=Q we may set ¢g;=0. We will
be mainly interested in the case where V() and
V(T') are large so that y< 1, €(I')< 1, and pq(T")
—~pr. We may also choose k"> k. In these cir-
cumstances the g; approach simple limits ¢; ob-
tained by making the replacements v, €, k, 1/V(Q)
=0 and po(T')=pr.

We may linearize the quadratic inequality (3. 37)
for £ =¥? by noting that if £, is the (positive) root
of the corresponding quadratic equality, we must
have ¥2<%,. If, in addition, the expression for the
root &, is simplified by using the inequality (1 +£)'/2
<1+%¢, we finally obtain

may be written

|Lyy|?<LyxLyy. (3.33)

In the Appendix these relations are used with the
identifications

X = [ dF p(¥), (3.34)
?= [ dR [dR'7* ®R)AR Y ®R)Y®),  (3.35)

to prove, with the aid of (3.31), that
(3.36)

[\Ir“{flﬂ}]z_gqo%‘((if;) +q1é() ([V(g:;]i/z + %) ’
(3.43)

where
0:(X)=q,+q,/X, X(T)=V(T) (K2+)). (3.44)

IV. ANALYSIS OF BOSE INEQUALITY

In this section we derive the results quoted in
Sec. II from the basic inequality (3. 37) for a Bose
system. We consider first the case where I' is
chosen to be € in order to prove that ¥,=0 in the
thermodynamic limit and to show how the long
long-range order vanishes as V() -,

A. T'=Q

In this case g; vanishes, and there are two pos-
sibilities we may consider.

1. 7MFixed, V(Q)-

In closest analogy with the previous arguments®®
we may first suppose that some fixed uniform or
periodic field, say,

n@E)=mn,e®"*, (4.1)

is imposed so that A« 7, does not vanish as the
thermodynamic limit V(Q)~ is taken [see (3. 9)—
(3.11)]. In this limit we have by (2.23) and (2. 16)

V=0 {f1Q}~ ¥, (;,(np) 4.2)

(with an obvious extension of the previous notation),
while with the choice k =0 the inequality (3. 43)
yields

[Zoi5y M) P < a7/ a5 1(0, ). (4.3)

Now, as the field amplitude 7, vanishes, we have
A=0 and I(0, )~ (for d=1 or 2). Hence we con-
clude that
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1in01 o1 fn}=0. (4.4)
o

Alternatively, in response to question (b) of the
Introduction, we may avoid the use of the symmetry-
breaking field altogether.

2. n=0

In this case X vanishes identically and the basic
inequality (3. 43) becomes

q1
qu(K, O)

i<

dz da
[1+611V(9)K2] “amva 4

where, now, X=V(R)k?. Now we are free to choose
the cutoff k as a function of V() so as to yield the
best inequality. To this end let us consider first
d=1when, by (3.24), I(x,0)~ k™, and then, tenta-
tively, ignore the last term in (4.5). By minimiza-
tion at fixed V() the best choice is seen to be

K2=q,/q, V() . (4.6)

With this value we have ¢,(X)=2¢; and we find from
(3. 24) that for large V(Q)

2 _2m(q7 g5)"'? s B
Wl 19} < et *agrvi > 471

(4.7

Asymptotically the second term is negligible, and
hence ¥ decreases as V(Q)™1/% which is an indica-
tion of how the long long-range order falls to zero.
If the thermodynamic limit is now taken with f=1,
we find directly that ¥,=0, as stated in Sec. II.
For more general functions, the result precludes
macroscopic occupancy of any “single-particle
state” f(¥).

The same choice (4. 8) is also quite satisfactory
when d=2, where, for large V(R), it leads to

8n(qr/q5) g5

[‘I’Q{f‘ Q} ]2-<- ln[V(Q)x” q;o/q;] + Zq;ev(n) 5 d=2.

(4.8)

Again the first term dominates asymptotically so
that ¥ decreases slowly as [InV(R)]'/2. This is
sufficient, however, to prove that ¥, again vanishes.
As a matter of fact, an asymptotically stronger
bound [replacing 8 by 47 in (4. 8)] may be obtained
by taking k%« [InV(R2)]/V(82), but for the present
purpose this is not necessary.

Lastly, we remark that if the field (4. 1) acts on
© but its amplitude is reduced uniformly to zero
as V(Q)-=, then, once again, it follows from argu-
ments similar to those above that ¥,=0 in this
(special) thermodynamic limit.

B. I'CQ

When T is properly contained in £, the coefficient
g3 no longer vanishes, and the analysis must be
modified. We first note that for large V(I') and
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V() and fixed b, we have from (3. 9)-(3.11)

1 0§ bpp V(D) [1+V(A)/ V(D)

A
Y Pa V(A)

1 /
z;%%[‘%(;m]ld[1+s(b)], d=1,2 (4.9

where we have assumed that pr , ® pr=p,, and
where we write

s(0)=Vv(a)/V(T)= cgb [Sd /V(r)]”d, d=1,2
(4.10)

where ¢, and ¢, are constants of order unity which
depend on the shape of I'. (If the “side” boundaries
of £ and I'" coincide with those of A, we have ¢;22
and ¢,2 2/r.) Since X does not vanish for finite
V(I'), we may choose k =0 with no loss of general-
ity. (Note that the previously optimal value x®
a«1/V is now comparable to or less than X.) We
first consider the case d=1.

1. d=1
From (4.9) and (4.10) we have
X=V(I')\~c,S;b/bE[1+s(b)],

and the basic inequality (3. 43) becomes

(4.11)

2q,(X) (c;bS)Y2[1 +s(b)]/2
[¥alr|r}Ps qoboE(Z/ﬂ) ianzl(;ﬂ/‘/x)] V(D72

L q 4y
+¢I1(X) [W?]TE+V(F)] . (4.12)

Now let us hold b and b, fixed so that (4. 10) implies
s(b)~0as V(I')=. [This is consistent with our
assumption ¥ - 0 as discussed after (3.12). ] The
parameter k' is still at our disposal and an optimal
choice will be discussed below. However, in order
to show that (4.12) implies that the short-range
order, as measured by \Ifg{fll"}, decreases like
[V(T)]Y/* (as stated in Sec. II), it is clearly suffi-
cient to choose k' constant (so that 1/ /A~ ).

We now restrict attention to the case where 7(F)
vanishes in T and A. We then have b=b, [see (3.9)];
and the inequality can be optimized with respect to
choice of b. One finds that

b=b*(T)E qlclsl/qz“ l/T
1.20

(4.13)

is not too far from optima With this choice we
find ¥~ 1/V(T') [see (3.9) and (4.9)]. In addition,
on using (4.9) and (4.10) we see that for large V(I')

q:(X)~2¢7sq So=1+3s(b*). (4.14)

For fixed cross section S, the factor s, is asymp-
totically equal to unity but to see what happens in
case S; becomes large, itis useful to retain it. Our
result can then be written
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[To{f 1T} P<pr [ve/ V(D)3 d=1 (4.15)

where the scale volume v, is given by

peot/2e 4(g7gss)"/?
7o T aol2/m tan T (k /N ]

1/2 ©
So | - qs B
+ pr [qs + [V(r)]ﬁz] , n=0 (4. 16)

which has been simplified by using sp'< s})/ 2

<[1+s(v*)]*2and pr < q7. Inordertoexpress thisre-
sult in more transparent form we introduce a
characteristic thermal volume

vp=AD,D,, (4.17)

where the thermal de Broglie wavelength is, as
usual,

A o= (2172 /mk 5 T)Y 2 (4.18)

The mean number of particles in this thermal
volume (which is effectively a slice domain of length
A ;) is just

Np=prvg=prAsD,D,, d=1. (4.19)

In terms of these parameters we find for large V(I")
[using (3.9) and (4.9)]
So=1+3s(6¥)=1+(c3/8n)[Npv/V(T)]=(1~v)Y2

(4. 20)

and
A=4n/A%Ny, with Np=pr V. (4.21)

By (3. 38) to (3. 42) the only dependence of (4.16) on
k' is through the factor

t=(q3/pr)*/3/(2/m) tan"x  with k= %X,
For this we find
t~[1+x(nNpN2)VER2[1 4 2/7x],

provided both brackets are close to unity. The
optimum choice of x, and thence of k%, is hence

found to be close to 2(NpN%/m% so that
t=~1+2/(rNpN3)V* . (4.23)
Finally, if we define the dimensionless compress-
ibility ratio

X=Kr K‘?"“ﬂ:PkBTKT ’

(4. 22)

(4. 24)
and use the definitions (3. 38), etc., the scale vol-
ume is given by

vo= (18/M) Npvpsit? [1+(1/2/16N,) (X 2+NP/®F.
(4. 25)

The last factor will be close to unity in most cases
of interest (x <1 for a condensed phase, and Ny
>1). I we similarly neglect the deviation of s,
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and ¢ from unity, the result (4.15) becomes
Volf IT}< (2/7 ) p ¥ 2 NY A o o/ V(D) 4

<[32D%2D%1%% /mk s TV(T) /4. (4. 26)
Also, if T is a rectangular domain of length L
and sides D,, D,, we have

Yo {fIT}< p¥ 216N A 1 /TLe) Y =p ¥/ 2 (ro/ L)V,
(4.27)

Since we always have ¥<p!/? this inequality has
no force until Ly exceeds 7y= (16/mT)NA,. As an
illustration we may consider liquid helium of
normal density at, say, 2°K, which is about 0.2°K
below the bulk A point. If the helium is confined in
a rectangular channel of width D,=D,=25 A, then
Ar=~6 Aand N r=80. Then the inequality has effect
only when L exceeds 7,~2xX10° A=2x10% cm.

For Lr=1 cm it would yield p7%%{fIT}<0. 004.

Of course, the inequality is stronger at higher tem-
peratures, lower densities, and for liquids of
higher molecular weight.

We may note that the inequality (4. 27) contains
the factor D,D,/Ly, which becomes large as the
cross section increases. Conversely, we can show
generally that ¥o{f|T} vanishes provided that D,D,/
Ly~ 0. The significance of this factor can be un-
derstood as follows. Suppose that owing to some
thermal fluctuation, or other agency, the phase ¢
of the order parameter is twisted uniformly by a
half turn over the length of I' so that the gradient
is Vo=7/Ly. The associated increase in energy
density is proportional to pp(#2/2m) (V)2 (For
the correct answer one should use the superfluid
density, p,, in place of pr.) Since V(I')=D,D,Lry,
the total increment in energy is just AE = (n/8m)
xpp(DyD,/Ly). The ratio of this to the mean
thermal energy k5T is proportional to

A3prDyD,/Ly=NpAg/Ly.

Thus the right-hand side of (4.27) varies as
(AE/RgT)'/%, which is a direct measure of the ease
of exciting thermally a fluctuation which can destroy
the phase coherence along the length of I'.

2. d=2
For a two-dimensional system (4.11) becomes
X=V(Or=cp[S; V(D)2 /b3 [1+s(b)], (4. 28)
and on using (3. 23) the basic inequality (3. 43) yields

__:an ey
me] *wm)
(4. 29)

For fixed b and b, we see from (4. 28) that »"* di-
verges as [V(I) /2. Thus, if «'is also fixed X~

4mg,(X) 1
(eolf [T} P< b * i
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and ¢,(X)~g¢yt as V(T') becomes large. The first
term in (4. 29) then decreases asymptotically as
1/InV(T), while the last term decreases much more
rapidly. This establishes the result stated in Sec.
II: that ¥ {fIT} must decrease at least as fast as
[lnv(T) ]2,

To simplify the optimization of (4. 29) we again
restrict attention to the case where 7(¥) vanishes
in I and A. We may simplify the second term as
before by replacing q,(X) by pr, since pr<q;<q,(X)
Similarly, in the first term g, may be replaced by
gs [see (3.39)]. Then, if we rewrite (4. 29) to dis-
play all the dependence on k' and b explicitly, we
obtain

g2 4or 1+a;b+ab?+k®/87D pr
g5 -s0) Infk®o(1+s.0) V(D)/Z/DY%,]

1/2 1
+Pr<N_T2"} +N_r> , (4. 30)

where, as before, Np=pV(I'), and where
ar=q5/copr V(D) V2, ap=q5/prV(T), (4.31)

and

sy=cy DY/ [V(D) V2. (4. 32)

If the right-hand side of (4. 30) is minimized with
respect to k', one finds the optimal choice is
close to

k%=81D, pr(1+a.b +ab?/

In{87b(1 +s:b) pr [D, V(D) /% coe}. (4. 33)

When this value for k' is inserted in (4. 30), the
thickness b is the only remaining free parameter.
Optimization must then be carried out rather care-
fully, since one discovers that the best choice b*
varies as V(I')?/InV(T'), from which it follows
that many terms in (4. 30) are of comparable order
and cannot be neglected. The optimal choice is not
far from

b=bX(T)=c; [D,V(D)}/?/[c}D,+q5 /or] £[V(D)],
(4. 34)

where
L[V(I)]=1n{87D 0 V(T')/e[c3D,+q5/pr]}, (4.35)

so that b*~1/T1InT-! as T—-0. Then, provided £
is not too small, one obtains

2 2Ny XME o1
[qlﬂ{f'r}]$£_21n(£)_1 +p1"[N}/2 +N1" ’
(4. 36)
where, now,
Np=ppA%D,, d=2 (4.37)

e
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is the mean number of atoms in the thermal vol-
ume vp= AZTDZ.

It is clear that the second term will normally be
completely negligible compared to the first. On
dropping it we may write our result

[Wo{fIT} F<20r Np/In[V(T)/v,]
<4mp% #?D,/mk zTIn[V(T')/v,], (4.38)

where the scale volume vy(T’) is given by

2 2 2

~€  (Cz __l_ 87N
Prvo=7" \an +NT>[ln( ecs )|’
which depends only weakly on V(I'). Alternatively,

if we take I' to be a circular cylinder of radius
R and height D, we obtain

(4. 39)

[¥o{fIT} F<or Nz /In(Rr/70) (4.40)
where, using c2=4n, the scale vadius is
1/2
1/0(1")=@§17§ <1+ﬁlr—) / 1n<2—1:€>17A1T%, (4.41)
where now
Np(Rp)=mprR.D,, (4.42)
so that 7, depends, albeit weakly, on Rp. [The

numerical coefficient in (4.41) is about 1. 08. ] At
first sight the result (4.40), which shows that ¥?
decays as R~ at least as fast as

a(R)= ay/[InR - Inlno,R]

(ignoring inessential parameters), is weaker than
a decay as B(R) =B,/InR, which would have followed
directly from (4. 30) without troubling to optimize
with respect to b. Closer inspection reveals, how-
ever, that the optimized constant ¢, is one-half

the original constant §,. Consequently the bound
(4. 40) is smaller than the unoptimized result by a
factor

a(R)/B(R)=%[1 - (Inlne,R/InR)]" ~1 as R~o.

(4.43)

Evidently a bound varying simply as 1/InR is in-
cluded in our results but will be weaker numerical-
ly.

Unfortunately, as might be anticipated from the
logarithmic dependence on volume or radius, these
inequalities are rather weak. Thus, if for example,
we consider again liquid helium of normal density
at T=2°K, we find that the inequality has no force
for a film of thickness D,=10 A until Ry exceeds
10°A. When R-=1 cm, it yields a bound of only
about % for ¥?/pr. Alternatively, we may ask how
thin the film must be to be certain that ¥%<0. 1pr,
say. [Note that with f(¥)=1 the ratio ¥%/p is
effectively the condensate density no/N. ] For a
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radius of around 1 cm we find that this inequality
must hold if the thickness is less than 1.5 A.
Evidently our analysis cannot rule out “effective”
Bose condensation in laboratory-sized helium films.

All of the above considerations have referred to
subdomains I' which were “slices” as explained in
the previous Sec. III. However, we may obtain
bounds for a general subdomain © in the case
f(¥)=1 by noting that the one-body density matrix
o(F, ') is never negative.?! It follows that

¥o{110}< ¥ {111}, provided 6CT. (4.44)

V. BEHAVIOR OF DENSITY MATRIX

We have obtained bounds on the short-range
order parameter ¥o{f IT}, which, by definition,
is a double integral of the single-particle density
matrix oo(F, ') over I'. It is clearly of interest,
however, to obtain more information about o o(F,7’)
itself. To some extent this may be done as follows
by using the knowledge?! that o o(F, ¥') is never nega-
tive.

For simplicity we adopt the geometries introduced
in Sec. IV; namely, we take

d=1: Q={F; 0<y<D,, 0<z<DJ}
I={¥; x*<R;, 0<y<D,, 0<z<D,},

V(T')=2RD,D,=AS, (5.1)
and
d=2: Q={f; 0<z<D,},
T={F; x*+y*<Rr; 0<z<D,}, (5.2)

V(T)=R%D,=A,S, .

These formulas define the projected area A ,(T').
Now most interest focuses on og(f, ¥’') in the
thermodynamic limit V(Q)~ . Because of the re-
stricted dimensionality, however, o (F, T') will
still vary separately with ¥ and T'. Accordingly,
we set ¥ = (¥, ¥,) and average over the “perpendicu-
lar” directions to obtain the “projected” density
matrix

T (1T ~F11)=832 [ dF, [ dF\0.(F, '),

which, as indicated, isa function only of |T, - T}1.
Now with f(¥)=1 we may use the non-negativity of
0. to conclude that

(5.3)

[‘I’m{l l r}]z = Ad-z fl'ﬂ,l <Rp df{! ./;?.,Iaer dﬁ,&w( I Fn - F'n | )

ZA;Z ‘fl.}h‘((l/Z)er;’"f dﬁllaw(lﬁll') )

IRy 11/ Rp

(5. 4)
where the restriction of the  ranges of integration
to 3Ry ensures that ¥, =T + R, always lies in the
original domain of integration. Performing the
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first integration now yields
[w{1[T}P2 (224, flﬁ.,l <<1/zmpd§" 5. (IR, ])
=1 Rt fo“’“r T.(R)RI 4R,
d=1,2 .(5.5)

Then from the result (4. 27) [with N, defined in
(4.19)] we find

FFoa(r)dr < 8op(NpAy/m)V2RY2 | d=1  (5.6)

while from (4.40) [with N, defined in (4.37)] we
obtain

JEG.(r)r dr <8pcNR*/In(2R/7y), d=2. (5.7)

These two results demonstrate that ¢..(») must de-
crease “on average” at least as fast as 1/7'/2 for
d=1 and as 1/In(r/7;) for d=2. I, as is not im-
plausible, G.(r) decreases monotonically, we can
be more precise. Thus monotonicity implies that

S e ar 25.(R) [rttar=5.(RIRY/4,
(5.8)

so that from (5. 6) and (5.7) we obtain the explicit
pointwise bounds

G.(R) <8pp(NpA,/m)'/2/RM? | d=1 (5.9)

<16ppNy/In(2R/7,) , d=2
where 7y(R)x InR is given by (4.41) and (4.42). As
explained in connection with (4. 44), a bound for
d=2 with the simpler » dependence 1/In(R/7}) can
be obtained, but it will be weaker than the above
bound, which varies as 1/[In(R/7g) - InIn(R/7y")].
Asymptotic results similar to (5. 9) can still be
obtained if it is known only that &.(7) is monotonic
for »>7;: All that is necessary is to break the
range of integration in (5. 8) at »=7;. Somewhat
more generally, if &.(7) is not necessarily mono-
tonic but admits a monotonic lower bound Z(R),
one can prove the inequalities (5. 9) for Z(R). On
the other hand, our results cannot yield a pointwise
upper bound on G (7) if this function is not mono-
tonic, since, for example, tall but sufficiently
narrow “spikes” would make a negligible contribu-
tion to the integrals over I', which is what our
basic bounds deal with.
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APPENDIX

In this Appendix the Schwarz inequality is applied
to

Q{f}= JudF [zdR' [ dRF*R)F BXp®) 'R ®R)),
| F@)] =1 (A1)

where the thermal average may be that for the in-
finite system & or for a finite § D E. We define
the average Ly, for arbitrary operators X and ¥

by
Lyy =(XY) -(X)(Y), (A2)

and in this notation the Schwarz inequality is ex-
pressed as

| Loy [* < | Lx| [ Ly | - (43)
For the operators X and ¥ we choose

X=[d¥p(#)=N,,

Y= fedf [od¥ FHE) @) E)9E) (A4)
where we have noted that X is the number operator
for the domain E [see (2.8)]. With this choice we
have simply

{rft=(xv) . (A5)
The following operator relations hold for X and ¥
defined in (A4):

X'=x2>0, Y'=v20, [X, ¥]=0. (A8)
These relations imply the positivity of XY, so that
from (A2) and (A5) we have

0<Q{f}=(X¥)< |Lyy| +(X)(T). (A7)

Now introduce a complete orthonormal set of
functions ¢,,(¥) appropriate to the domain = (say,
with vanishing normal derivative at the boundary).
With no loss of generality we may choose ¢4(F)
=[V(2)]'/?. Completeness implies

2om 0¥ (e, (F)=6F -7, F,FCE. (A8)

Then we define the “occupation number” operators
by

A= JodT [ dF 0% F )@ ) f*E) D) P G WE) 20,
(A9)

FISHER

()

and use (A8) and (Al) to show that
Dintin= JzdFp(F) =Ny . (A10)

Since #,, is a non-negative Hermitian operator and
[#i, ie]=0, we have {#,#,+)= 0, so that

(X2) =(N2) =20 20, Al ) Z (7B . (A11)
Now, as explained after (3. 31), we may write
Ly =((Ng ~(N))2) = p(Z V(2 en TK[1 +€(2)] ,
(A12)
where p(E)=N(Z)/V(5)is the mean density of par-

ticles in E. Furthermore, from (A12) and (A13)
we find

Lyy= V(E)z((ﬁo "(%))2}
S V(Z)P(NZ) = V(2 )P[Lyy +N(E)]. (A13)
The Schwarz inequality then yields

| Ly | € (LygLyp)'/?,

SV(E) {Lxx[Lxx +N(= )z] }1/2 s

= [Lyx]/2VEIN(E1 + Ly N(2)2]72,
(A14)

Then from (A7), (A13), and (A14), @{f}is bounded
by

Q{f} < VEWNEma { f|E}

+p(2)?V(E)H1+0[1/V(E)]}, (A15)
where no{f| }, which is given by
V(Ema{f|E}=(1), (A16)

has essentially been defined in (2.23). The result
(A15) is used to bound @{f} in (3. 36).
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" The ordering of one- and two-dimensional spin systems of finite thickness and cross sectionis
considered in the presence and absence of a symmetry-breaking magnetic field. The exchange
interactions are allowed to vary randomly or regularly throughout the lattice. Itis shown rigor-
ously by applying Bogoliubov’s inequality to a subdomain of the system that, provided the
(suitably averaged) exchange interactions do not fall off too slowly, no spontaneous ordering can

occur,

Explicit bounds on the spin-spin correlation function, summed over the sites in a sub-

domain, are obtained which indicate how the short-range order decays with distance. Detailed
numerical plots for the order as a function of the subdomain size are presented for various real-

istic values of the temperature.

Conditions under which these curves yield bounds on the spa-

tial decay of the spin-spin correlation function are also discussed.

I. INTRODUCTION

This paper represents a continuation of the pro-
gram begun in the previous one! (hereafter referred
to as I), which discussed Bose particle systems.
Since there is particular interest in spin systems,
and since the arguments and numerical analysis will
differ somewhat, the magnetic case willbe presented
in a self-contained fashion (although some allusion
will be made to analogous procedures used in the
Bose case). The reader should consult the Introduc-
tion and Sec. II of I for a general description of
notation and strategy® (to be summarized briefly
below), but those interested solely in spin systems
can omit the discussion of second quantization in I
[Eqs. (12.3)-(12.15)].

We consider an anisotropic Heisenberg ferromag-

net of 9U(Q) localized spins S(F) occupying the sites
T of a regular lattice contained in a three-dimen-
sional domain 2. We take the Hamiltonian to be

[(12.1)]
Ta=— % Tz T JoF, FISUF)SUEN + Zs B - §@),

=X,y

(1.1)
where h(F) is the external field in energy units
(A= guH), while J,(F, ) is the exchange coupling.
We will allow J,(F, ') to be regular or to vary ran-
domly throughout the lattice, subject only to the
condition of “planar” isotropy, i.e.,

JFF)=J,F F)=JF F)=JF, ) for F,F'CQ .

(1.2)



